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Many genetic diseases and inferior traits are due to base pair 
alterations in genomic DNA (1, 2). Cytosine and adenine base 
editors (CBEs and ABEs), which are fusions of a nickase-type 
Cas9 (nCas9) protein with a deaminase domain, can catalyze 
the conversion of C→T (C>T) and A>G in the target site of a 
single guide RNA (sgRNA), respectively (3–6). To investigate 
base-editing specificity, previous attempts focused on either 
the limited number of off-target sites predicted by in silico or 
in vitro approaches, such as Digenome-seq (7) and EndoV-seq 
(8), or the proximal and predictable regions of sgRNA 
binding sites (9–11). It is still unclear whether these base 
editors may introduce unwanted genome-wide off-target 
mutations due to the challenges posed by analysis of large 
genomes from heterogeneous cells (6). Analyzing the samples 
from clonally derived systems by whole genome sequencing 
could overcome these limitations, thus yielding an objective 
assessment of the specificities of base editors at the whole 
genome level. In this study, we performed a comprehensive 
investigation of genome-wide off-target mutations of BE3, 
HF1-BE3, and ABE in rice, an important crop species. 

We chose three widely used base editors, BE3, HF1-BE3, 
and ABE (Fig. 1A). A total of 14 base editor constructs target-
ing 11 genomic sites were transformed into rice via Agrobac-
terium transformation (Fig. 1A, table S1, and methods). 
Regenerated T0 plants edited by BE3, HF1-BE3, or ABE and 
those transformed with the base editors but without sgRNAs 
were analyzed by WGS (Fig. 1 and fig. S1). In addition, 12 wild-
type (WT) plants were used to filter out background 

mutations in the rice population (methods), and nine plants 
that went through the transformation process but with no T-
DNA integration (designated as control plants) were used to 
evaluate the mutations occurring during tissue culture and 
transformation (Fig. 1B). To ensure high confidence in base 
calling, all plants were sequenced at an average depth of 60× 
(table S2). Genetic changes consisting of SNVs and small in-
sertions/deletions (indels) were identified in each plant using 
three and two independent variant-calling programs, respec-
tively (fig. S2). The identified mutations were confirmed by 
Sanger sequencing at randomly selected sites with a 98% suc-
cess rate (figs. S3 and S4 and table S3). Furthermore, we con-
firmed efficient on-target base editing through WGS (table 
S4). 

The SNVs identified by WGS in the base editor plants were 
compared with the off-target mutations predicted using the 
software Cas-OFFinder (12). Only six SNVs in BE3-edited 
plants were found to come from three predicted off-target 
sites; none of the SNVs in HF1-BE3– or ABE-edited plants 
concurred to the predicted off-target sites (figs. S5 and S6 and 
methods). Additional examinations also showed that low se-
quence similarity was observed between the adjacent se-
quences of the identified SNVs and the target sites (figs. S7 
and S8 and methods), further supporting that the majority of 
the SNVs identified by WGS are not predictable by Cas-OF-
Finder. 

We analyzed the indels and SNVs detected in BE3, HF1-
BE3, and ABE plants with control plants, after removing on-
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target and predicted off-target SNVs (fig. S5 and tables S4 and 
S5). The numbers of indels in base editor groups showed no 
differences from the control group (Fig. 2A and fig. S9). In 
contrast, the numbers of SNVs per in BE3 and HF1-BE3 
groups were significantly higher than those detected in ABE 
and control groups (Fig. 2B and fig. S10). We classified the 
SNVs into individual mutation types (figs. S11 and S12 and 
tables S6 and S7). In BE3 and HF1-BE3 groups, the percent-
ages of C>T (G>A) transition were higher than the percentage 
obtained for the control group (Fig. 2C). In the ABE group, 
on the other hand, the levels of the different mutation types 
were all similar to those in the control group (Fig. 2C). These 
results suggest that SNVs exposed to BE3 and HF1-BE3 were 
mainly C>T transitions. In addition, the average numbers of 
the C>T SNVs in the BE3, HF1-BE3, BE3-sgRNA, and HF1-BE3-

sgRNA plants were higher than those found in the ABE and con-
trol plants (Fig. 2, D to F). We noted that one sample in the 
BE3-sgRNA group had a considerably high number of SNVs (Fig. 
2E). This high-end data point was not caused by experimental 
error upon examining the sequencing and variant calling 
data (fig. S11 and table S2). Moreover, omitting this high-end 
data point in the analysis did not alter the trend that the BE3 
and BE3-sgRNA groups had more total SNVs and C>T SNVs than 
the control and ABE groups (fig. S13). On the other hand, the 
numbers of the A>G mutations did not differ significantly 
across the base editor and control groups (Fig. 2, G and H). 
This is consistent with the previous studies showing that 
overexpression of different deaminases results in elevated 
global C>T mutations in Escherichia coli, yeast, and human 
(4, 13, 14). Moreover, the uracil glycosylase inhibitor (UGI), 
present in BE3 and HF1-BE3 but not ABE (Fig. 1A), has also 
been reported to enhance genome-wide C>T conversion (15). 
Therefore, we speculate that the higher C>T mutation rates 
observed in BE3 and HF1-BE3 plants relative to controls may 
result from APOBEC1 and/or UGI. By contrast, ABE is derived 
by fusing a nCas9 protein with an engineered RNA adenosine 
deaminase (5). It is possible that the engineered RNA adeno-
sine deaminase does not show excessive DNA base editing, 
thus avoiding the generation of genome-wide A>G SNVs out-
side the sgRNA-targeting windows. 

We mapped the distribution of SNVs and found that total 
SNVs and C>T SNVs were distributed throughout the rice ge-
nome (Fig. 3A and tables S8 and S9), with no mutation 
hotspots detected (table S10). In addition, we found that the 
percentages of C>T SNVs in genic regions were significantly 
higher in the two BE3 and HF1-BE3 groups than in the ABE 
or control groups (Fig. 3, B and C; table S11; and methods). 
In addition, the high numbers of C>T SNVs associated with 
BE3 and HF1-BE3 are more likely to occur in transcribed 
genic regions (Fig. 3D, table S12, and methods), where single-
stranded DNA is generated owing to active transcription. 

In summary, BE3 and HF1-BE3, but not ABE, induce 

genome-wide mutations in rice. These off-target mutations, 
being mainly C>T SNVs and enriched in transcribed genic re-
gions, are not predicted by current in silico approaches. A 
similar study also finds that BE3 but not ABE induces sub-
stantial off-target mutations in mouse embryos (16). To min-
imize the off-target base mutations by BE3 or HF1-BE3, 
functional optimization of cytidine deaminase and/or UGI 
components is necessary. 

Additionally, improved CBEs, such as YEE-BE3, which 
may have lower DNA affinity than BE3 used in this study (17), 
might be employed to help reduce off-target mutations. 
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Fig. 1. BE3-, HF1-BE3–, and ABE-mediated base editing in rice. (A) Schematic representation of the three 
base editors. (B) Experimental design and workflow. The values in parentheses represent numbers of 
independent plants used for WGS. 
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Fig. 2. Analysis of the genetic changes identified by WGS. (A and B) Numbers of indels (A) and total SNVs (B) 
identified in the BE3, HF1-BE3, and ABE plants. Each dot represents the number of indels or SNVs from an individual 
plant. The numbers of indels of BE3, HF1-BE3, ABE, and control were 94, 89, 79, and 82, respectively. The numbers 
of total SNVs of BE3, HF1-BE3, ABE, and control were 504, 632, 327, and 338, respectively. (C) The frequencies of 
different types of SNVs in the plants exposed to the three base editors and in the control group. (D) Comparison of 
total C>T SNVs in the BE3, HF1-BE3, ABE, and control plants. The numbers of SNVs were 203, 347, 88, and 105, 
respectively. (E and F) Analysis of C>T SNVs in the BE3 plants (E) or the HF1-BE3 plants (F) according to target sites 
by comparison with the C>T SNVs in the control group and the individuals treated by BE3-sgRNA or HF1-BE3-sgRNA.  
(G) Comparison of total A>G SNVs in the BE3, HF1-BE3, ABE, and control plants. The numbers of SNVs were 31, 28, 
28, and 28, respectively. (H) Analysis of A>G SNVs in the ABE plants according to target sites by comparison with 
the A>G SNVs in the control group and the individuals treated by ABE-sgRNA. P values were calculated by the Mann-
Whitney test; P < 0.05 was considered significant in (A) to (H). All values represent means ± SD. 
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Fig. 3. Genomic distribution of the C>T SNVs identified in the BE3, HF1-BE3, and ABE plants. (A) All 
SNVs and C>T SNVs are randomly distributed on the 12 rice chromosomes in BE3, HF1-BE3, ABE, and 
control groups of plants. (B) C>T SNVs in genic regions versus in the whole genome compared among BE3, 
HF1-BE3, ABE, and control groups of plants. (C) Comparisons of C>T SNVs in the given regions versus in 
the whole genome among BE3, HF1-BE3, ABE, and control groups of plants. (D) C>T SNVs in highly 
transcribed regions versus in the whole genome among BE3, HF1-BE3, ABE, and control groups of plants. P 
values were calculated by the Mann-Whitney test, and P < 0.05 was considered to be statistically significant 
in (B) to (D). All values represent means ± SD. 
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