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SUMMARY
The elucidation of protein function and its exploitation in bioengineering have greatly advanced the life sci-
ences. Protein mining efforts generally rely on amino acid sequences rather than protein structures. We
describe here the use of AlphaFold2 to predict and subsequently cluster an entire protein family based on
predicted structure similarities. We selected deaminase proteins to analyze and identified many previously
unknown properties. We were surprised to find that most proteins in the DddA-like clade were not double-
stranded DNA deaminases. We engineered the smallest single-strand-specific cytidine deaminase, enabling
efficient cytosine base editor (CBE) to be packaged into a single adeno-associated virus (AAV). Importantly,
we profiled a deaminase from this clade that edits robustly in soybean plants, which previously was inacces-
sible to CBEs. These discovered deaminases, based on AI-assisted structural predictions, greatly expand
the utility of base editors for therapeutic and agricultural applications.
INTRODUCTION

The discovery and engineering of proteins has greatly trans-

formed the life sciences. Traditional enzyme mining, based

solely on sequence information, has been effective at classifying

and predicting protein functions and evolutionary trajectory.1,2

However, one-dimensional (1D) information, whether in the

form of core amino acids, specific motifs, overall amino acid

sequence identity, or hidden Markov models (HMMs), cannot

completely illuminate the functional characteristics of proteins.

In contrast, since protein function is ultimately determined by

three-dimensional (3D) protein folds, understanding protein

structures would provide reliable and rational insights into pro-

tein function during the process of protein mining and clustering

classifications.3,4 Although the number of publicly reported

protein structures is increasing, it is miniscule compared with

the number of proteins discovered based on amino acid se-
quences.5,6 Recently, many artificial intelligence (AI) methods

have been developed that use 1D amino acid sequences to

accurately predict high-resolution 3D protein structures.7–9

These protein structure prediction methods should thus enable

large-scale mining and classifications of proteins with specific

functions.

Deaminase-like proteins catalyze the deamination of nucleo-

tides and bases in nucleic acids. They play important roles in de-

fense, mutation, nucleic acid metabolism, and in other biological

processes10–13 and have been recently exploited for use in pro-

grammable DNA and RNA base editors,14–16 a class of precise

genome editing technologies. Members of this family act as

nucleotide deaminases and nucleic acid deaminases, including

adenosine, cytidine, and guanine deaminases, and have the abil-

ity to act on single-stranded DNA (ssDNA),17 double-stranded

DNA (dsDNA),10 double-stranded RNA (dsRNA),18 transfer

RNA (tRNA),19 free nucleosides,12 and other nucleotide
Cell 186, 1–14, July 20, 2023 ª 2023 Elsevier Inc. 1

mailto:kzhao@qi-biodesign.com
mailto:cxgao@genetics.ac.cn
https://doi.org/10.1016/j.cell.2023.05.041


ll

Please cite this article in press as: Huang et al., Discovery of deaminase functions by structure-based protein clustering, Cell (2023), https://
doi.org/10.1016/j.cell.2023.05.041

Article
derivatives.20 The sporadic distribution of deaminases and their

rapid evolution due to positive selection often confound the rela-

tionships between the various protein families in phylogenetic

analyses based on sequence.20,21 Here, we performed protein

clustering classifications on the greater deaminase family of pro-

teins, based on AlphaFold2-predicted 3D structures.

To better differentiate and discover deaminases with diverse

functions, we employed AlphaFold2 to predict deaminase struc-

tures and subsequently performed structural comparisons to

generate a taxonomic tree of deaminase proteins that better re-

flects the different types of cytidine deaminases. Using

AlphaFold2-predicted structures, we were able to classify pro-

teins into different cladesmore efficiently than by using 1D amino

acid sequences.

Cytosine base editors (CBEs) use cytidine deaminases to cata-

lyzeC-to-U base conversions, resulting in permanent C,G-to-T,A
base edits in DNA.14,15,22,23 Base editors have great potential in

therapeutic genomeediting, in fundamental life sciences research,

and for breeding new elite traits into plants.24–26 Previous DNA

baseeditors exploited the use of two types of cytidinedeaminases

acting on either ssDNA or dsDNA.10,14 To date, only a few ssDNA-

targeting apolipoprotein B mRNA-editing enzyme catalytic

polypeptide (APOBEC)/activation-induced cytidine deaminase

(AID)-like deaminases and one dsDNA-targeting deaminase

(DddA) have been used to generate CBEs.10,14,15,27–30 These de-

aminases remain limited to sequence context restrictions, low

on-target:off-target editing ratios, and large protein sizes, which

makes their delivery by adeno-associated virus (AAV) viral vectors

difficult.31 For unknown reasons, some species like soybean

plants, a staple agricultural cropgrownall over theworld, havesuf-

fered from poor cytosine base editing since the technology was

first introduced in 2016.32 Thus, robust and more efficient CBEs

are still needed to further expand their utility. By generating protein

classifications based on predicted structures, we have developed

a suite of ssDNA deaminases (Sdds) and dsDNA deaminases

(Ddds) used for precision genome editing. We highlight that

enzyme mining based on structures predicted by AlphaFold2 is a

simple, flexible, and high-throughput method to classify and engi-

neer proteins with unknown functions.

RESULTS

Clustering and discovery of new cytidine deaminases
via protein structures
Wehypothesized that the comparison and clustering of known or

predicted protein structures—given that the 3D structure of a

protein ultimately determines its function—could be an effective

method for classifying deaminases into functional clades. Thus,

we employed a combination of AI-assisted protein structure pre-

diction, structural alignments, and clustering to generate protein

classification relationships among deaminases (Figure 1A). We

selected 238 protein sequences annotated as having a deami-

nase domain from the InterPro database and 4 distant outgroup

candidate protein sequences from the c-Jun activation domain

binding protein (JAB)-domain family (Figure S1A; Table S1). Spe-

cifically, we randomly selected 15 candidates of at least 100

amino acids in length from each of the 16 deaminase families

and used AlphaFold2 to predict their protein structures. We con-
2 Cell 186, 1–14, July 20, 2023
ducted multiple structural alignments (MSTAs) of all candidates,

and based on theMSTA results, we generated candidate similar-

ity matrices reflecting the overall structural correlation between

the proteins. We then organized these similarity matrices into a

structural dendrogram using unweighted pair group method

with arithmetic mean (UPGMA)33 (Figure 1B). The dendrogram

clustered the 238 proteins into 20 unique structural clades, and

the deaminases within each clade have distinct conserved pro-

tein structural domains (Figures 1C and 1D).

We found that accurate protein clustering classifications

could be generated based on protein structural alignments,

even without the use of contextual information such as

conserved gene neighborhoods and domain architectures.

When using structure-based hierarchical clustering, different

clades reflect unique structures, implying distinct catalytic

functions and properties (Figure 1D). Interestingly, we also

found that structure-based clustering methods were much

more robust and effective at sorting for functional similarities

than traditional 1D amino acid sequence-based clustering

approaches (Figures S1B and S1C). For example, adenosine

deaminases (A_deamin, PF02137 in InterPro database), en-

zymes involved in purine metabolism, were split into different

clades when using amino acid sequence-based clustering

methods but were all grouped together into a single A_deamin

clade using our structure-based clustering approach (Figures

1B, 1C, and S1B). Additionally, four deaminase families (deox-

ycytidylate monophosphate [dCMP], MafB19, LmjF365940,

and APOBEC, as annotated by InterPro) were each divided

into two separate clades when using structure-based clustering

(Figures 1C and 1D). Comparison of protein structures showed

that the two clades for each of these four deaminase families

had quite different structures, contrary to what their InterPro

naming and sequence-based classification might suggest

(Figures 1D and S1D–S1H). In summary, AI-assisted 3D protein

structures provide reliable clustering results and only require an

amino acid sequence from the user, making it a convenient and

effective strategy for generating protein relationships.

Evaluating diverse deaminase clades by fluorescence
imaging
CRISPR-based CBEs are precise genome editing technologies

capable of generating C,G-to-T,A substitutions in the genome

of living cells. Because ssDNA-specific cytidine deaminases

are an essential component of CBEs, we sought to explore the

deamination activity of each structure-based classified deami-

nase clade in the context of DNA base editing. We evaluated a

total of 239 deaminase domains by selecting at least 5 proteins

from each clade. Importantly, because the core deaminase

domain used for clustering may not show editing activity, we

extended each deaminase sequence to include additional sec-

ondary structures from each corresponding gene around the

deaminase domain (Figure S1A). For each of the 239 newly anno-

tated deaminases, we generated plant CBEs by fusing each

candidate domain-related sequence to the N terminus of a

Cas9 nickase (nCas9, D10A), followed by an uracil-DNA glycosy-

lase inhibitor (UGI).14,34 We developed four blue fluorescent pro-

tein (BFP)-to-green fluorescent protein (GFP) reporter systems

to reflect TC, CC, GC, and AC 50-base deamination preferences
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Figure 1. Protein clustering of deaminases based on structures predicted by AlphaFold2

(A) Workflow of protein clustering based on AlphaFold2-predicted structures. The structures of candidate re-annotated domain sequences were predicted by

AlphaFold2 and subsequently clustered based on structural similarities. Then, ssDNA and dsDNA cytidine deamination activities were experimentally tested in

plant and human cells.

(B) Structural similarity matrix to reflect similarities between 242 predicted protein (238 cytidine deaminases and 4 JAB) structures across 16 deaminase families

and 1 outgroup. Different family proteins are distinguished by different colors; heatmap color shades indicate the degree of similarity.

(C) The classification of proteins into different deaminase families based on protein structure and labeled with different color modes. Nodes with BootstrapR90

are identified by circles.

(D) Representative predicted structures for each of 16 deaminase clades.
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(Figure S2A). Each CBEwas co-transformedwith all four BFP-to-

GFP reporter plasmids into rice protoplasts and analyzed

by fluorescent microscopy after 3 days.34 We found that deam-

inases belonging to the SCP1.201 (PF14428), XOO_2897

(PF14440), MafB19 (PF14437), toxin-deaminase (PF14424),

and TM1506 (PF08973) clades possessed ssDNA cytidine
deamination activity (Table S2). Interestingly, we noticed that

some deaminase candidates displayed different sequence pref-

erences, compared with the APOBEC/AID-like deaminases, as

evaluated using the fluorescence reporter system (Table S2).

Therefore, we demonstrated that the use of 3D structures for

protein classification enables the discovery of new functional
Cell 186, 1–14, July 20, 2023 3
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deaminase clusters for use in base editors, offering new oppor-

tunities for developing enhanced and bespoke precise base ed-

iting tools.

Validation of the diverse functions of SCP1.201
deaminases
While evaluating deaminases from each clade, we were sur-

prised to find that some deaminases annotated from the

SCP1.201 clade were capable of deaminating ssDNA substrates

(Table S2). These deaminases were previously named dsDNA

deaminase toxin A-like (DddA-like) deaminases in the InterPro

database (PF14428). The DddA-like deaminase was recently

developed into a CRISPR-free dsDNA CBE (DdCBE) capable

of deaminating cytosine bases on dsDNA.10 Because of DddA,

all proteins in the SCP1.201 clade were also annotated as

Ddds. To re-analyze this SCP1.201 clade, we selected all 489

SCP1.201 deaminases from the InterPro database. We also

included 7 additional proteins that were 35%–50% identical by

basic local alignment search tool (BLAST) with DddA but were

characterized separately in InterPro. After identity and coverage

filtering, we performed a new AI-assisted protein structure-

based classification of 332 SCP1.201 deaminases (Table S3).

Structure clustering showed that the SCP1.201 deaminases

clustered into different clades with unique core structural motifs

(Figures 2A–2E and S2B).

We found that DddA and 10 other proteins clustered into one

subclade of SCP1.201. Upon analyzing the 3D predicted struc-

tures of all 11 proteins within this subclade, we found that they

shared a similar core structure to DddA. Given their structural

similarities to DddA, we hypothesized that the other proteins in

this subclade can also perform dsDNA cytidine deamination.

To evaluate dsDNA deamination, we generated DdCBEs

comprising each deaminase alone or split in half at a residue

similar to the site where DddA was split by protein structure

alignment and joined together using a dual transcription acti-

vator-like effector (TALE) system10 (Figure S2A; Table S2). We

evaluated 10 proteins from this Ddd subclade in HEK293T cells

at the JAK2 and SIRT6 sites and observed that 8 proteins could

perform dsDNA base editing (Figures 2A and 2F). We hereafter

referred to these deaminases as Ddds and assigned them to

this newly identified Ddd subclade.

To evaluate other SCP1.201 candidate proteins, we selected

at random 76 proteins that are representative of each node

branch based on the SCP1.201 structural clustering results (Fig-

ure 2A; Table S2) and subjected these to our CBE fluorescent

reporter system. We found that 45 showed detectable fluores-

cence and selected 23 to evaluate endogenous base editing in

the context of CBE in mammalian cells (Figure 2; Table S2).

Although these were previously characterized as DddA-like,

many showed cytosine base editing activity on ssDNA (Figures

2A and 2G; Tables S2 and S4) but not dsDNA (Figures S2C

and S2D). Therefore, we hereafter referred to these ssDNA-tar-

geting protein domains from the SCP1.201 clade as Sdds. We

were surprised to find that a majority of protein members from

the SCP1.201 clade were found to be Sdd proteins, since these

were all previously annotated as DddA-like (Tables S2 and S4).

We also observed that these Sdd proteins shared a similar pro-

tein structure as Sdd7, one of the highest editing ssDNA CBEs,
4 Cell 186, 1–14, July 20, 2023
which is distinct from the Ddd proteins (Figures 2B–2E and

S2B). Thus, the annotated DddA-like deaminases in the

InterPro database (PF14428) should be further subdivided and

re-annotated accordingly.

In comparison, we also performed a clustering of the proteins

from the SCP1.201 clade, based on 1D amino acid sequences,

and found that some outgroup members were dispersed

throughout the tree, even though we chose four more closely

related families as outgroups (Figures S2E and S2F). These re-

sults highlight the usefulness and importance of using protein

structure-based classifications for comparing and evaluating

protein functional relationships.

New Ddd proteins have distinct editing preferences
to DddA
Due to the strict 50-TC sequence motif preference of DddA, the

use of DddA-based dsDNA base editors is limited predominantly

to TC targets.10 Although the recently evolved DddA11 displayed

a broadened ability to deaminate and edit cytosine bases with a

50-HC (H = A, C, or T) motif, the editing efficiency for AC, CC, and

GC targets still needs to be improved.35 We evaluated the newly

discovered Ddd proteins to determine if they could expand the

utility and targeting scope of DdCBEs. Thus, 13 deaminases

belonging to the Ddd subclade were cloned into DdCBEs and

evaluated for dsDNA base editing at the endogenous JAK2

and SIRT6 sites in HEK293T cells (Figures 2F, S3A, and S3B;

Table S2). Interestingly, we found that Ddd1, Ddd7, Ddd8, and

Ddd9 have editing efficiencies comparable to or higher than

DddA (Figures 3A, S3A, and S3B). Importantly, we identified

that Ddd1 and Ddd9 have a much higher editing activity

compared with DddA at 50-GC motifs (Figures 3A, S3A, and

S3B). Strikingly, at the C10 (5
0-GC) residue in JAK2 and the C11

(50-GC) residue in SIRT6, we found that while DddA resulted in

21.1% and 0.6% editing, respectively, Ddd9 was capable of ed-

iting 65.7% and 45.7% (Figure 3A).

Because certain Ddd proteins seemed to exhibit distinct edit-

ing patterns, compared with DddA, we sought to evaluate any

sequence motif preference for these Ddd proteins. We first con-

structed 16 plasmids35 encoding the JAK2 target sequence and

modified positions 9–11 from GCC to NCN (N = A, T, C, and G),

yielding 16 different plasmids, and we independently co-trans-

fected each plasmid along with a DdCBE variant (Figure 3B).

Following comparative analyses of C,G-to-T,A base conversion

frequencies for each NCN, we generated corresponding

sequence motif logos to reflect sequence context preferences

of each Ddd (Figure 3B). We found that as previously discussed,

DddA and its structural homolog, Ddd7, strongly preferred a

50-TC sequence motif (Figures 3C and S3C). In contrast, we

found that Ddd1 and Ddd9 showed a preference for editing

50-GC substrates, while Ddd8 showed a preference for editing

50-WC (W = A or T) substrates (Figures 3C and S3C). Therefore,

the newly discovered dsDNA-targeting deaminases can edit

cytosine bases at motifs previous inaccessible to DddA, which

is also essential for future engineering efforts.

Sdds enable base editing in human cells and plants
We next wondered whether the newly characterized Sdd pro-

teins could be used for more precise or efficient base editing.
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Figure 2. The clustering and characteristics of SCP1.201 deaminases

(A) Classification of SCP1.201 deaminases based on protein structure. The JAB families are colored brown and regarded as an outgroup, and the tested de-

aminases are shown in red (single-stranded editing), green (double-stranded editing), gray (no editing was detected). Undefined deaminases in white await further

functional analysis. The detailed single- and double-stranded activity can be found in Table S4. Nodes with Bootstrap R90 are identified by circles.

(B) Predicted core structure of DddA by AlphaFold2.

(C) Characteristics of the canonical structure of Ddd protein.

(D) Predicted core structure of Sdd7 by AlphaFold2.

(E) Characteristics of the canonical structure of Sdd protein.

(F) Experimental evaluation of dsDNA deamination activity of Ddds at two endogenous sites in HEK293T cells. The edited bases used for calculating editing are

highlighted in green.

(G) Experimental evaluation of ssDNA deamination activity of Sdds at two endogenous sites in HEK293T cells. The edited bases used for calculating editing are

highlighted in green.

Data in (F) and (G) are representative of three independent biological replicates (n = 3).
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We chose to evaluate the six most active Sdds as well as four

weaker Sdds and compared their activities using a fluorescent

reporter system (Table S2). We generated plant CBEs for each

of the 10 Sdds and evaluated their endogenous base editing

across 6 sites in rice protoplasts (Figures 4A and S4A). We found

that seven of the deaminases (Sdd7, Sdd9, Sdd5, Sdd6, Sdd4,

Sdd76, and Sdd10) had higher activity, compared with the rat

APOBEC1 (rAPOBEC1)-based CBE. The most active Sdd7

base editor reached as high as 55.6% cytosine base editing,
which was more than 3.5-fold higher than that of rAPOBEC1.

To examine the versatility of these deaminases, we also con-

structed the corresponding human-cell-targeting BE4max vec-

tors36 and evaluated their editing efficiencies across three

endogenous target sites in HEK293T cells. In agreement with

the results in rice, we found that Sdd7 had the highest editing ac-

tivity (Figure S4B).

We previously showed that human APOBEC3A (hA3A)

performed robust base editing with a large editing window in
Cell 186, 1–14, July 20, 2023 5
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Figure 3. Evaluating newly discovered Ddd protein properties for use as base editors

(A) Editing efficiencies and editing windows of Ddd1, Ddd7, Ddd8, Ddd9, and DddA SCP1.201 dsDNA deaminases at two genomic target sites in HEK293T cells.

(B) Plasmid library assay to profile context preferences of each Ddd protein in mammalian cells. Candidate proteins target and edit the ‘‘NC10N’’ motif.

(C) Sequence motif logos summarizing the context preferences of Ddd1, Ddd7, Ddd8, Ddd9, and DddA, as determined by the plasmid library assay.

For all plots, dots represent individual biological replicates, bars represent mean values, and error bars represent the SD of three independent biological rep-

licates (n = 3).
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plants.37,38 We therefore compared the editing activities of hA3A

and Sdd7 in human cells (Figure S4B) and plants (Figure S4C).

Interestingly, Sdd7 had comparable editing activities to hA3A

across all three target sites in HEK293T cells (Figure S4B) and

five endogenous sites in rice protoplasts (Figure S4C). Because

editing efficiency is of primary significance for genome editing in

plant breeding, these results confirmed that Sdd7 is a robust

CBE for use in both plants and human cells.

Sdd proteins have unique base editing characteristics
When evaluating endogenous base editing, we observed

different editing patterns by the different Sdd-CBEs across all

tested genomic target sites in both human and rice cells. For

instance, while Sdd7, Sdd9, and Sdd6 showed no particular

motif editing preference, Sdd3 seemed to prefer editing 50-GC

and 50-AC motifs and strongly disfavor editing 50-TC and 50-CC
motifs (Figure S4D). To better profile the editing patterns of

each deaminase, we used targeted reporter anchored positional

sequencing (TRAP-seq), a high-throughput approach for parallel

quantification of base editing outcomes.39 A 12K TRAP-seq li-
6 Cell 186, 1–14, July 20, 2023
brary comprised of 12,000 TRAP constructs, each containing a

unique gRNA expression cassette and the corresponding surro-

gate target site, was stably integrated into HEK293T cells by len-

tiviral transduction. Following cell culture and antibody selection,

base editors were stably transfected into this 12K-TRAP cell line

followed by 10 days of blasticidin selection (Figure 4B). On day

11 post transfection, we extracted the genomic DNA and per-

formed deep amplicon sequencing to evaluate the editing prod-

ucts of each deaminase (Figure 4B). We found that Sdd7 and

Sdd6 showed no strong sequence context preference, but rA-

POBEC1 had a strong preference for 50-TC and 50-CC bases

while disfavoring 50-GC and 50-AC bases (Figure 4C). By

contrast, Sdd3 showed an entirely complementary pattern

preferring to edit 50-GC and 50-AC bases while showing nearly

no activity toward 50-TC and 50-CC bases (Figure 4C). Interest-

ingly, we found that Sdd6 and Sdd3 had different editing win-

dows and preferred to edit positions +1 to +3 in the protospacer,

as compared with rAPOBEC1 and Sdd7 (Figure 4C). In conclu-

sion, the newly identified Sdd base editors show unique base ed-

iting properties such as increased editing efficiencies, disparate
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Figure 4. Evaluating newly discovered Sdd proteins for use as base editors in plant and human cells

(A) Overall editing efficiencies of the Sdds and rAPOBEC1 across six endogenous target sites in rice protoplasts. The average editing frequencies using rA-

POBEC1 at each target were set to 1, and frequencies observed with Sdds were normalized accordingly. Dots represent each of three individual biological

replicates across six endogenous genomic sites.

(B) Overview of using 12K-TRAP-seq to perform high-throughput quantification of the activities and properties of the Sdds and rAPOBEC1 in HEK293T cells.

(legend continued on next page)
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deamination motif preferences, and altered editing windows,

compared with conventional CBEss.

It was previously described that CBEs could cause genome-

wide Cas9-independent off-target editing outcomes, which rai-

ses concerns about the safety of these precise genome editing

technologies for clinical applications.40,41 It is thought that these

off-target mutations may be a result of overexpression of the

cytidine deaminase. We wondered whether the newly discov-

ered Sdd proteins could offer a more favorable balance between

off-target and on-target editing. We therefore evaluated the

Cas9-independent off-target effects of the 10 Sdds, using an es-

tablished orthogonal R-loop assay in rice protoplasts.42 We

found that 6 (Sdd2, Sdd3, Sdd4, Sdd6, Sdd10, and Sdd59) of

the 10 deaminases had lower off-target activities than rAPO-

BEC1. Interestingly, while Sdd6 showed nearly no off-target

editing activity, it was still robust at on-target base editing

when tested across six endogenous sites in rice protoplasts

(Figures 4D and S4E). When we analyzed the on-target:off-target

ratios of these 10 deaminases, Sdd6 exhibited the highest on-

target:off-target editing ratio, which was 37.6-fold higher than

that of rAPOBEC1 (Figure 4E). We further compared the on-

target and off-target editing of Sdd6 to that of rAPOBEC1

and its two high-fidelity deaminase variants, YE1 and YEE, in

HEK293T cells.43 Importantly, we found that Sdd6 had the high-

est on-target:off-target editing ratios, which were calculated to

be 2.8-, 2.1-, and 2.5-fold higher than that of rAPOBEC1, YE1,

and YEE, respectively, and 10.4-fold higher than that of hA3A

(Figures 4F and S4F). Notably, the on-target activity of Sdd6

was comparable to that of rAPOBEC1 and much higher than

that of YE1 and YEE (Figure S4F). Thus, we identified that the

SCP1.201 clade contains unique and more precise Sdd proteins

to be used as high-fidelity base editors.

Rational truncation of Sdd proteins assisted by
AlphaFold2 structure prediction
Although viral delivery of CBEs has great potential for disease

treatment, the large size of APOBEC/AID-like deaminases

restricts their ability to be packaged into single-AAV particles

for in vivo editing applications.31 Others have developed dual-

AAV strategy delivery approaches by splitting CBEs into an

amino-terminal and carboxy-terminal fragment and packaging

them into separate AAV particles.31 However, these delivery ef-

forts would challenge large-scale manufacturing, require higher

viral dosages, and would pose potential safety challenges

for human use.44 Recently, a truncated sea lamprey cytidine

deaminase-like 1 (PmCDA1)-based CBE was developed that

could theoretically be packaged into a single AAV, but the editing
(C) Overview of the editing properties and patterns of the Sdds and rAPOBEC1,

windows of the deaminases. Right, a sequence motif logo reflecting the context

(D) Evaluation of off-target effects using an orthogonal R-loop assay in rice protop

independent biological replicates across six on-target sites in rice in (A) versus ave

ssDNA regions (OsDEP1-SaT1 and OsDEP1-SaT2) for each base editor.

(E) On-target:off-target editing ratios for each base editor calculated from (D).

(F) On-target:off-target editing ratios of Sdd6, rAPOBEC1-YE1, rAPOBEC1-YEE,

sites in HEK293T cells.

For (E) and (F), dots represent individual biological replicates, bars represent m

replicates (n = 3). Data are presented as mean values ± SD. p values were obtaine

****p < 0.0001.
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efficiency was extremely low when using the packaged AAVs for

HEK293T cell transduction.45 As SCP1.201 deaminases are

canonically compact and conserved (Figure S5A), we thought

that they might be the ideal protein for single-AAV CBEs.

We wondered whether we could use AI-assisted protein

modeling to further engineer and shorten the size of the newly

discovered Sdd proteins. We then generated multiple truncated

variants of Sdd7, Sdd6, Sdd3, Sdd9, Sdd10, and Sdd4, and

tested these variants for endogenous base editing in rice proto-

plasts across two sites each.

We identified mini-Sdd7, mini-Sdd6, mini-Sdd3, mini-Sdd9,

mini-Sdd10, and mini-Sdd4 as newly minimized deaminases

that are small (�130–160 aa) and have comparable or higher ed-

iting efficiencies, compared with their full-length proteins, both in

rice protoplasts and human cells (Figures 5A and S5B–S5E). We

found that the structures of these mini-proteins are conserved

throughout the protein structural alignment (Figures 5A, S5D,

and S5E). Strikingly, all six miniaturized deaminases would

permit the construction of single-AAV-encapsulated SaCas9-

based CBEs (<4.7 kb between inverted terminal repeats [ITRs])

(Figures 5B and S5F–S5H). We used mini-Sdd6 to construct a

single-AAV SaCas9 vector and found that it had editing effi-

ciencies of around 60% in mouse neuroblastoma N2a cells at

two sites in the Mus musculus 4-hydroxyphenylpyruvate dioxy-

genase (HPD) gene46 by transient transfection (Figure 5C).

Following successful AAV packaging and tittering, we infected

N2a cells and directed editing to theMmHPD-T2 site. The editing

efficiency significantly increased with increasing AAV concentra-

tions, reaching up to 43.1% editing (Figure 5D). These results

highlight that the Sdd proteins offer great advantages over

APOBEC/AID-like deaminases in terms of AAV-based CRISPR

base editing delivery. The success in further shortening Sdd

proteins for AAV packaging highlights the great potential of AI-

assisted protein engineering.

Robust base editing with Sdd-based CBEs in rice and
soybean
We next explored the use and application of newly engineered

Sdd proteins for base editing in plants. We first evaluated the

use of mini-Sdd7 in Agrobacterium-mediated genome editing

of rice plants and observed more mutants recovered and a

greater proportion of edited plants, which reflects both a higher

efficiency and lower toxicity, compared with the most used

hA3A-based CBE in agricultural application (Figure S5I).

Soybean is one of the most important staple crops grown

around the world, serving as an essential source of vegetable

oil and protein.47 Although previously reported base editors
as evaluated by the 12K-TRAP library. Left, the editing efficiencies and editing

preferences of the deaminases.

lasts. Dots represent average on-target C-to-T conversion frequencies of three

rage sgRNA-independent off-target C-to-T conversion frequencies across two

rAPOBEC1, and hAPOBEC3A tested across two on-target and three off-target

ean values, and error bars represent the SD of three independent biological

d using two-sided Mann-Whitney tests. *p < 0.05, **p < 0.01, ***p < 0.001, and
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have been widely used in many crops like rice, wheat, maize, po-

tato, and more, cytosine base editing remains challenging and

poorly efficient across most sites tested in soybean crops.32,48

Since the first development of base editing, only one article

has used Agrobacterium tumefaciens to obtain stable transfor-

mations and cytosine base-edited soybeans, but the efficiency

was extremely low and resulted in chimeric plants rather than

completely edited soybeans.32

We wondered whether our newly developed Sdd-based CBEs

would result in superior cytosine base editing in soybeans. The

transient base editing shown was evaluated using a soybean

hairy root transformation mediated by Agrobacterium rhizo-

genes. This approach is often used in soybeans due to its quick

nature (�20 days) in allowing researchers to evaluate editing per-

centages in root cells. We constructed vectors with an AtU6 pro-

moter driving single-guide RNA molecule (sgRNA) expression

and a Cauliflower Mosaic Virus (CaMV) 23 35S promoter driving

CBE expression, and we evaluated these by using transgenic

soybean hairy roots following Agrobacterium rhizogenes-medi-

ated transformations (Figure S5J). We found that the APOBEC/

AID-like deaminases had low editing activities across all five

sites evaluated, as expected, including at the GmALS1-T2 and

GmPPO2 sites that were particularly difficult to edit by other

CBEs in soybean (Figure 5E). Remarkably, mini-Sdd7 displayed

26.3-, 28.2-, and 10.8-fold increased cytosine base editing

levels, compared with rAPOBEC1, hA3A, and human AID

(hAID), respectively, across the 5 sites and reached editing effi-

ciencies up to 67.4% (Figure 5E). However, the cells from hairy

root transformations are impossible to regenerate into soybean

plants, so the canonical Agrobacterium tumefaciens is used to

perform stable soybean plant editing in cotyledons.

We next sought to use hA3A and mini-Sdd7 to base edit and

obtain transgenic soybean plants following Agrobacterium

tumefaciens-mediated transformation. We chose to edit the

endogenous GmPPO2 gene to create an R98C mutation, which

would result in carfentrazone-ethyl-resistant soybean plants.49

Although the editing efficiencies from hairy root transformations

are a great approach for evaluating relative editing efficiencies,

they are not reflective of the percentage of edited plants following

soybean plant regeneration. Even with the highly efficient hA3A

base editor in plants, we never successfully obtained cytosine

base-edited plants (Figure 5F). Surprisingly, we obtained 34
Figure 5. Engineering truncated Sdd proteins for use in animals and p

(A) Engineering truncated Sdd proteins. Top, AlphaFold2-predicted structures o

truncated regions are shown in pink. Bottom, relative editing efficiencies of Sdds a

two sites in HEK293T cells.

(B) Theoretical packaging of a SaCas9-based CBE vector for packaging into a sin

their AAV vectors. Gray-colored deaminases are too large for single-AAV packag

(C) Editing efficiency of mini-Sdd6 at two endogenous target sites in the MmHPD

(D) AAV infection efficiency in N2a cell line at MmHPD-T2 site. Three AAV conce

(E) Editing efficiencies of mini-Sdd7, rAPOBEC1, hA3A, and hAID base editors a

(F) Frequencies of mutations induced bymini-Sdd7 and hA3A in T0 stable soybean

were collected by four independent biological experiments.

(G) The genotypes of base-edited soybean plants.

(H) Phenotypes of soybean plants treated with carfentrazone-ethyl for 10 days. Lef

bars, 1 cm.

For (A) and (C)–(E), dots represent individual biological replicates, bars represen

biological replicates.
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base-edited heterozygotes from 154 transgenic soybean seed-

lings of Sdd7 transgenic plants from 4 independent biological ex-

periments (Figure 5F). Therefore, Sdd7 nowenables efficient cyto-

sinebase editing in soybeanplants, whichwill greatly contribute to

future agricultural breeding efforts (Figures 5F and 5G).

After treatment with carfentrazone-ethyl for 10 days, we could

obviously observe that while the wild-type plant was sensitive to

wilting and could not generate roots, the mutated plant edited by

Sdd7 grew well and normal (Figure 5H). The development of effi-

cient CBEs for use in soybean plants could enable diverse appli-

cations in the future.

DISCUSSION

Compared with the limited insights provided by 1D amino acid

sequence alone, 3D structural information provides a more visu-

ally informative representation of potential protein functions.

Structure-based protein mining promises to be a useful method

for discovering and engineering new enzymes. Previously,

research in functional genomics has been limited by either the

cost of high-resolution analysis of protein structure or by the

low-accuracy of traditional computational-driven folding simula-

tions.50,51 AI-based high-accuracy protein folding prediction

models and the related databases have breathed new life into

the life sciences.

Here, we carried out a proof-of-concept exploration of protein

classification and mining of protein functions, based on struc-

tural predictions for the cytidine deaminase-like superfamily.

We showed that AlphaFold2-predicted structures classified de-

aminases reliably into distinct clades with diverse protein folds

and catalytic functions. We built on this by identifying deami-

nases with novel and different DNA substrates, which in turn per-

mits the design of bespoke precision genome editing tools. In

principle, this strategy could be applied to the high-throughput

classification and functional analysis of any protein dataset.

We believe that future sequencing efforts in parallel with struc-

tural predictions will substantially advance the mining, tracking,

classification, and design of functional proteins.

Currently only a few cytidine deaminases are in use as CBEs.

Canonical efforts based solely on protein engineering and

directed evolution have helped to diversify editing properties;

however, these efforts are generally difficult to establish. Using
lants

f Sdd6, Sdd7, Sdd3, and Sdd9. Conserved regions are shown in cyan, and

nd their minimized version across two endogenous sites in rice protoplasts and

gle AAV. Top, schematic diagram of APOBEC/AID-like deaminases, Sdds, and

ing. Bottom, schematic representation of Sdd-based AAV vectors.

gene in N2a cells.

ntrations were tested.

t five endogenous target sites in soybean hairy roots.

plant editing in cotyledons by canonical Agrobacterium tumefaciens. The data

t, wild-type soybean plant (R98). Right, base-edited soybean plant (C98). Scale
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our structure-based clusteringmethods, we discovered and pro-

filed a suite of deaminases with distinct properties that can work

both in plants and mammalian cells.

Among the AI-rational-discovered and -designed deami-

nases, we identified compacted Sdd7 and Sdd6 that show great

promise for both therapeutic and agricultural applications. Sdd7

was capable of robust base editing in all tested species and had

much higher editing activity than the most commonly used

APOBEC/AID-like deaminases. Surprisingly, we found that

Sdd7 was capable of efficiently editing soybean plants, which

has been a major limitation for cytosine base editing previously.

We speculated that Sdd7, derived from the bacterium Actino-

synnemamirum, may possess high activity at temperatures suit-

able for soybean growth, in contrast to themammalian APOBEC/

AID-like deaminases. While profiling Sdd6, we found that this

deaminase was smaller and by default more specific than the

other deaminases, whilemaintaining high on-target editing activ-

ity. We believe that these newer discoveries and engineering

efforts will contribute to the development of bespoke genome

editing tools, which will be more precise and specific to each

therapeutic or breeding application.

Advances in sequencing methods have propelled the discov-

ery of new species and proteins. We also believe that AI-guided

protein structure prediction and classification will provide a new

effective perspective for protein classification with variable se-

quences and low sequence conservation, such as immune-

related proteins. The advent of AI-assisted protein structure

predictions in combination with growing numbers of sequencing

efforts will further spark new enzyme discovery and enable even

greater bioengineering efforts.

Limitations of the study
The classificationmethod based on 3D structure alignment dem-

onstrates great advantages but still has some limitations. Firstly,

it is not suitable for proteins with high sequence identity. For

functional differences caused by SNPs, or for proteins with

high sequence identity, the structural differences are difficult to

be fully characterized by AlphaFold2 or other structure predic-

tion methods. Secondly, it is not suitable for proteins that rely

on oligomeric or multiple complexes or proteins that have out-

of-phase features when active in vivo. For proteins with these

variable dynamic processes, a combination of molecular dy-

namics simulation is required. Finally, it is not suitable for pro-

teins with high difficulty in obtaining precise structures based

on predictive methods. For example, AlphaFold2 does not

provide a high-confidence prediction result for many orphan pro-

teins, and it is believed that with the development of new algo-

rithms, this problem can be effectively solved.

Furthermore, due to the length and time constraints of this pa-

per, we cannot fully explore the properties of all proteins in the

SCP1.201 family and other family proteins. However, we believe

that in future studies, there will be many surprises for these large

and unknown protein families.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

FastT1 Competent Cells Vazyme C505-02

Chemicals, peptides, and recombinant proteins

DMEM (1X)+GlutaMax Gibco 10569044

FBS Fetal Bovine Serum, Qualified Gibco 10091148

TrypLE Express Gibco 12605-010

PBS pH 7.4 basic (1X) Gibco C10010500BT

Streptomycin, Penicillin Gibco 15140-122

Blasticidin S HCl Gibco A1113903

Puromycin Gibco A1113803

Opti-MEM Gibco 31985-070

Lipofectamine 2000 Invitrogen 11668019

Trypan Blue stain 0.4% Invitrogen T10282

Countess cell counting chamber slides Invitrogen C10283

Phanta Max Master Mix Vazyme P525-01

Poly(ethylene glycol) Sigma-Aldrich 81240

Magnesium chloride hexahydrate Sigma-Aldrich M9272

Calcium chloride dihydrate Sigma-Aldrich C7902

Potassium chloride Sigma-Aldrich P3911

Sodium chloride Sigma-Aldrich S5886

YEAST EXTRACT OXOID LP0021B

TRYPTONE OXOID LP0042B

Critical Commercial Assays

Plasmid Plus Midi Kit (100) QIAGEN 12945

Mycoplasma Detection Kit Transgen FM311-01

Cell/Tissue DNA Isolation Mini Kit Vazyme DC102-01

Triumfi Mouse Tissue Direct PCR Kit Genesand SD312

GeneJET Gel Extraction Kit Thermo Scientific K0692

Plant Genomic DNA Kit Tiangen DP305

PureYield� Plasmid Miniprep System Promega A1222

Deposited data

Deep amplicon sequencing data of rice This paper SRA: PRJNA915939

Deep amplicon sequencing data of human This paper SRA: PRJNA915940

Deep amplicon sequencing data of mouse This paper SRA: PRJNA915941

Deep amplicon sequencing data of soybean This paper SRA: PRJNA915942

Code for deep amplicon sequencing data

analyses from NovaSeq platform

This paper https://github.com/ReiGao/

GEanalysis/tree/master/Scripts

Code for deep amplicon sequencing data

analyses from Miseq platform

This paper https://github.com/ReiGao/

Miseq_BEanalysis

Experimental models: Cell lines

HEK293T ATCC CRL-3216

N2a ATCC CCL-131

Oligonucleotides

See Table S4 This paper N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Recombinant DNA

Ubi-BFP(TC) This paper N/A

Ubi-BFP(CC) This paper N/A

Ubi-BFP(AC) This paper N/A

Ubi-BFP(GC) This paper N/A

pnCas9-PBE Zong et al.34 Addgene # 98164

pnCas9-deaminase-PBE This paper N/A

pOsU3 Lin et al.38 Addgene # 170132

pCMV_BE4max Koblan et al.36 Addgene # 112093

pCMV-deaminase-BE4max This paper N/A

phU6 This paper N/A

pCMV-NLS-TALE-deaminase-UGI-NLS This paper N/A

pJAK2target-NCN This paper N/A

A3A-PBE Zong et al.37 Addgene # 119768

pCMV-A3A-BE4max This paper N/A

12K TRAP-seq library plasmid Xiang et al.39 N/A

Ubi-nSaCas9 Jin et al.42 N/A

pOsU3-Sa This paper N/A

pCMV-nSaCas9 This paper N/A

phU6-Sa This paper N/A

pCMV-YE1-BE4max This paper N/A

pCMV-YEE-BE4max This paper N/A

pCMV-mini-Sdd6-SaBE4max-bGH This paper N/A

pEFS-mini-Sdd6-SaBE4max-bGH This paper N/A

pminiCMV-mini-Sdd6-SaBE4max-bGH This paper N/A

pU1a-mini-Sdd6-SaBE4max-bGH This paper N/A

pCMV-mini-Sdd6-SaBE4max-spA This paper N/A

phminiU6-Sa This paper N/A

pH-Ubi-deam-nCas9-PBE This paper N/A

pE-35S-deam-nCas9-PBE This paper N/A

Software and algorithms

GraphPad Prism 8 GraphPad Prism software N/A

Adobe Illustrator Adobe N/A

PyMOL DeLano Scientific LLC N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, Caixia Gao

(cxgao@genetics.ac.cn).

Materials availability
All unique/stable reagents generated in this study are available from the lead contact with a completedMaterials Transfer Agreement.

Data and code availability
All deep amplicon sequencing data has been deposited at NCBI Sequence Read Archive database and are publicly available as of

the date of publication. Accession numbers are listed in the key resources table. Raw image data (Base editor reporter images) will be

provided upon request from the lead contact.All original code has been deposited at GitHub and is publicly available. GitHub links are

listed in the key resources table.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

E.coli transfection
FastT1 E.coli competent cells were used for amplifying plasmid DNA. Transfected E.coli cells were grown at 37�C in Lysogeny Broth

(LB) medium supplemented with 100 mg/mL ampicillin or kanamycin overnight.

Rice protoplast transfection
For protoplasts transfection, we used the Japonica rice (Oryza sativa) variety Zhonghua11 to prepare protoplasts. Protoplast isolation

and transformation were performed as described previously.52 Plasmids (5 mg per construct) were introduced by PEG-mediated

transfection. The transfected protoplasts were normally incubated at 26 �C for 72 hours for fluorescence cell observation or DNA

extraction.

Mammalian Cell lines and culture conditions
Both human HEK293T cells (ATCC, CRL-3216) andmouse N2a cells (ATCC, CCL-131) were cultured in Dulbecco’s Modified Eagle’s

medium (DMEM, Gibco) supplemented with 10% (vol/vol) fetal bovine serum (FBS, Gibco) and 1% (vol/vol) Penicillin-Streptomycin

(Gibco) in a humidified incubator at 37 �C with 5% CO2. Cells were plated on 75 cm2 Cell Culture Flask (NEST).

METHOD DETAILS

Protein clustering and analyzing
Protein sequences were downloaded from InterPro database53 and NCBI’s BLAST54 (https://blast.ncbi.nlm.nih.gov/Blast.cgi) on the

NR database. HMMwas utilized to annotate deaminase domains to reduce the accumulation of unrelated information by HMMER.55

We randomly chose 15 proteins from each family and clustered their domain sequences with a threshold of 90% sequence identity

and 90% coverage using CD-HIT to reduce redundant sequences.56 Representatives of each cluster were selected for further anal-

ysis. High confidence protein structures were predicted by Alphafold v2.2.0 and filtered with average per-residue confidence metric

predicted local-distance difference test (pLDDT) R 70.

Multiple sequence alignment was performed using Multiple Protein Sequence Alignment (MUSCLE).57 The phylogenetic tree was

constructed using IQ-TREE 2 (http://www.iqtree.org) with 1500 ultrafast bootstraps.58 A low perturbation strength (-pers 0.2) and

large number of stop iterations (-nstop 500) were set because of the short length of the deaminase domains. The paired structure

alignment was performed based on TM-score method59 and was further correction by relative distance between structural resi-

dues.60 The overall structural similarity matrix was performed based on the results of the paired structure alignment and was further

normalized sing the min-max method. The structural similarity matrix was further clustered by Unweighted Pair Group Method with

Arithmetic mean (UPGMA)33 and visualized by Figtree (http://tree.bio.ed.ac.uk/software/figtree/). Protein structure diagrams were

made in PyMOL.61

Deaminase synthesis and removal of redundant sequence
We chose gene fragments encoding complete deaminase domains as well as extra N and C protein sequences for commercial syn-

thesis (GenScript) (Figure S1A). All of the candidate cytidine deaminases were codon optimized (rice and wheat or human and

mouse). The toxin deaminase was split into two fragments and the split site was selected according to DddA by protein structure

alignment. The conserved protein structure was obtained throughmultiple alignment of predicted structure in PyMOL,61 which helps

to conduct the removal of redundant sequence.

Plasmid construction
For plant CBE vectors (maize ubiquitin-1 promoter-driven CBEs), synthesized deaminases were cloned into pnCas9-PBE vector

(Addgene#98164), yielding vectors with Ubi-1::NLS-deaminase-linker-nCas9(D10A)-UGI-NLS::CaMV expression cassettes. Among

them, pnCas9-miniSdd6-PBE, pnCas9-miniSdd7-PBE, and pnCas9-miniSdd3-PBE vectors are available in Addgene.

For CBE vectors for mammalian cells (CMV promoter-driven CBEs), synthesized deaminases-SpCas9-2UGI were cloned into p2T-

CMV-ABEmax-BlastR vector (Addgene#152989), yielding vectors with CMV::NLS-deaminase-linker-nCas9(D10A)-2xUGI-NLS::

bGH expression cassettes. Among them, p2T-CMV-miniSdd6-BE4max-BlastR, p2T-CMV-miniSdd7-BE4max-BlastR, and p2T-

CMV-miniSdd3-BE4max-BlastR are available in Addgene.

The DdCBE vectors including NLS, TALE array sequences, candidate cytidine deaminases, and UGI sequence were codon opti-

mized for both human andmouse, synthesized commercially (Genscript), and cloned into pCMV_BE4max vector (Addgene#112093),

yielding vectors with CMV::NLS-TALE-deaminase-UGI-NLS::bGH expression cassettes. Among them, pCMV_TALE-L-JAK2-Ddd9-

N and pCMV_TALE-R-JAK2-Ddd9-C vectors are available in Addgene.

The plant sgRNA vectors (rice U3 promoter drives sgRNA) were constructed as reported previously using the pOsU3 backbone

(Addgene#170132).62 To construct human and mouse sgRNA vectors (human U6 promoter drives sgRNA), the hU6 promoter was

amplified and cloned into the pOsU3 backbone, followed by sgRNA target sequence cloning steps.52

Plant SaCas9 vectors for off-target testing were constructed as reported previously.42
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To construct AAV vectors, the sequences between ITRs were synthesized (GenScript) and cloned into pX601 vector (Addg-

ene#61591), followed by sgRNA target sequence cloning steps. The AAV vector with MmHPD-T2 sgRNA target sequence was

named pAAV-EFS-SaKKH-spA-miniU6-miniSdd6-MmHPD-T2, this vector is available at Addgene.

To construct binary vectors for rice plant transformation, the candidate cytidine deaminases were codon optimized, synthesized

commercially (GenScript), and cloned into pH-nCas9-PBE vector (Addgene#98163), followed by sgRNA target sequence cloning

steps.52 The vector without sgRNA target sequence was named pH-Ubi-miniSdd7-nCas9-PBE, this vector is available at Addgene.

To construct binary vectors for soybean hairy root transformation, NLS, candidate cytidine deaminases, linker, nCas9(D10A), UGI,

P2A, mScarlet sequences were codon optimized, synthesized commercially (GenScript), and cloned into pBSE901 (Addg-

ene#91709) vector, followed by sgRNA target sequence cloning steps. To construct binary vectors for soybean transformation,

the selection marker was replaced by the EPSPS sequence. The vector withGmPPO2 sgRNA target sequence and EPSPS selection

marker was named pE-35S-miniSdd7-nCas9-PBE-GmPPO2, this vector is available at Addgene.

Mammalian cell line transfection
All the cells were routinely tested forMycoplasma contamination with aMycoplasmaDetection Kit (Transgen Biotech). The cells were

seeded into 48-well Clear TC-treated Plates plates (Corning) in the absence of antibiotic. After 16-24 hours, cells were incubated with

1 mL Lipofectamine 2000 (ThermoFisher Scientific), 300 ng vector with deaminases, and 100 ng sgRNA expression vector. For

DdCBEs transfection, cells were incubated with 1 mL Lipofectamine 2000, 300ng TALE-L and 300ng TALE-R. 72 hours later the cells

were washed with PBS, followed by DNA extraction. For examining off-target effects by the R-loop assay, four vectors namely BE4-

max vector, SaCas9BE4max vector and the corresponding sgRNA vectors were co-transfected into cells.36

TRAPseq library
We used the sgRNA 12K-TRAPseq library for evaluation of base editor properties. We seeded 23106 cells into 100 mm cell-culture

dish (Corning) 20-hours before viral transduction. We transduced 500 mL of sgRNA lentivirus. For stably integrated cells, we used

1 mg/mL of puromycin (Gibco) to select. For each base editor, we seeded 23106 cells into 6-plates 24-hours before transfection.

We transfected 15 mg of each CBE member plasmid DNA and 15 mg of Tol2 DNA with 60 mL of Lipofectamine 2000. Following 24

hours after transfection, we changed new culturing media to contain 10 mg/mL blasticidin (Gibco). After another 3 days, we washed

the cells, suspended and reseeded all cells in 10 mg/mL blasticidin-containing media. After 6 days, we harvested all cells by washing

with PBS then centrifuged and extracted DNA using Cell/Tissue DNA Isolation Mini Kit (Vazyme). For each member, we prepared

sequencing reactions by applying 1.2 mg of DNA with a first set of primers following by barcoding and next-generating sequencing.

DNA extraction
For HEK293T cells and N2a cells, genomic DNAwas extracted with Lysis Buffer and Proteinase K with a TriumfiMouse Tissue Direct

PCR Kit (Beijing Genesand Biotech). For protoplasts, genomic DNA was extracted with a Plant Genomic DNA Kit (Tiangen Biotech)

after 72 hours’ incubation. All DNA samples were quantified with a NanoDrop 2000 spectrophotometer (Thermo Scientific).

Amplicon deep sequencing and data analysis
TriumfiMouse Tissue Direct PCR Kit (Beijing Genesand Biotech) was used for amplification of target sequence in HEK293T cells and

N2a cells. Phanta Max Master Mix (Vazyme) was used for amplification of target sequence in plants.

Nested PCRwas used for amplification. In the first round PCR, the target region was amplified from genomic DNAwith site-specific

primers. In the second round, both forward and reverse barcodes were added to the ends of the PCR products for library construc-

tion. Equal amounts of PCR product were pooled and purified with a GeneJET Gel Extraction Kit (Thermo Scientific) and quantified

with a NanoDrop 2000 spectrophotometer (Thermo Scientific). The purified products were sequenced commercially using the

NovaSeq or Miseq platform, and the sequences around the target regions were examined for editing events.62 The analysis pipeline

of the sequencing data from NovaSeq platform can be refered as previous report62 that has now been shared in GitHub website

(https://github.com/ReiGao/GEanalysis/tree/master/Scripts) and the code of data processing fromMiseq platform has been shared

in GitHub website (https://github.com/ReiGao/Miseq_BEanalysis). Amplicon sequencing was repeated three times for each target

site using genomic DNA extracted from three independent samples. Analysis of base editing behaviour by NovaSeq and Miseq

was performed as described previously.62

For TRAP-seq analysis, we filtered next-generation sequencing (NGS) read depths of 12K TRAP below 50 and calculated the

average editing efficiency at the corresponding surrogate target site inside the windows (from -10 to +27). In addition, we calculated

the editing frequency for each NCN sequence motif and its proportions to evaluate context preferences.

All the primers used are listed in supplementary table (Table S5).

Agrobacterium-mediated transformation of rice calli
The Japonica rice (Oryza sativa) variety Zhonghua 11 was used for genetic transformation in this study. Binary vectors were intro-

duced into Agrobacterium tumefaciens strain AGL1 by electroporation. Agrobacterium-mediated transformation of Zhonghua11

callus cells was conducted as reported.63 Hygromycin (50 mg/ml) was used to select transgenic plants.
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Soybean hairy root transformation and plant transformation
The soybean (Glycine max) variety Williams 82 was used to generate hairy roots. Binary vectors were introduced into Agrobacterium

rhizogenes strain K599 by electroporation. Explants were allowed to grow and develop roots for around 20 days in germination me-

dium. Transgenic hairy roots were generated without selection in 10-12 days.64 The soybean (Glycine max) variety Zhonghuang13

were used for generation of transgenic plants using Agrobacterium tumefaciens-mediated stable transformation. 10 mg/L glypho-

sate was used for selection during plant regeneration.65 For phenotype identification of base-edited soybean, 0.3 mg/L carfentra-

zone-ethyl were added in rooting medium for selection.

Plant mutant identification
Genomic DNA of transgenic plants was extracted with DNA Quick Plant System (Tiangen Biotech). Specific primers were used to

amplify and sequence the target sites as described previously62 (Table S5) (BGI). T0 transgenic rice and soybean plants were exam-

ined individually.

Recombinant adeno-associated virus (rAAV) production and infection
The serotype type of AAVwas selected as AAV-DJ, and the packaging and quantification was conducted at PackGene Biotech Com-

pany and the final viral titer is 1E+13 GC/mL. For infection, N2a cells seeded into 48-well Poly-D-Lysine-coated plates (Corning) of

50,000 cells/well with 250 ml of DMEM 24 hours before. To demonstrate the correlation between infection efficiency and concentra-

tion, we tested three concentrations, MOI: 1.03107, 1.03108 and 1.53108. Cells were harvested 7 days after infection and the me-

dium was changed on the third day. The genomic DNA was extracted using Triumfi Mouse Tissue Direct PCR Kit (Beijing Genesand

Biotech).

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification
Datasets were assessed using GraphPad Prism 8 (GraphPad Software).

Statistical analysis
All numerical values are presented as means ± s.d. Differences between control and treatments were tested using Student’s t-tests,

and P < 0.05 was considered statistically significant, P < 0.01 was considered statistically extremely significant.

ADDITIONAL RESOURCES

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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Figure S1. Discovery of cytidine deaminases via protein structures, related to Figure 1

(A) Workflow of re-annotation and synthesis of candidate deaminases. Since the amino acid sequence of the deaminase domains from InterPro may be

incomplete, we used protein BLAST from the NCBI database to obtain the full length of gene encoding deaminase, and then re-annotated the deaminase domain

sequence with hmmscan (https://www.ebi.ac.uk/Tools/hmmer/search/hmmscan). The resulting domain sequences were then used for structure classification.

Because the core deaminase domain used for clustering may not show editing activity, we synthesized some of the candidate deaminases with elongated

N-terminal and C-terminal sequences from each corresponding gene. This extension will help to enhance protein stability and ensure the deaminase activity can

be fully played, and then we evaluated their cytidine deaminase activity with the reporter system or at endogenous sites.

(B) Protein sequence-based inference of the phylogeny of the members of the CDA superfamily. Except for the JAB superfamily as outgroup, different cytidine

deaminase families are shown by different color modes. Nodes with Bootstrap R90 are identified by circles.

(C) Clustering results of structures and sequences based on different methods. The results of family classification based on the InterPro database were used as

reference. The top and bottom was the different clustering results of structures and sequences, respectively. The default maximum cluster components are set

to 21.

(D) Alignment of representative structures of the separate LmjF365940, APOBEC, dCMP, and MafB19 clades corresponding to Figure 1B. The two represented

structures of each clade are also shown with pLDDT. Although the pairs of clades from each of the four families had partially similar structures, their overall

structures displayed relatively large differences, leading them to be classified as different.

(E) Protein structural alignment of 15 SCP1.201 proteins.

(F) Protein structural alignment of 15 Toxin_deam proteins.

(G) Protein structural alignment between 15 SCP1.201 proteins and 1 Toxin_deam protein.

(H) Protein structural alignment between 15 Toxin_deam proteins and 1 SCP1.201 protein.
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Figure S2. Validation of the diverse functions of SCP1.201 deaminases, related to Figure 2
(A) Left, reporter system for ssDNA cytidine deamination activity identification. Top of the left panel, schematic diagram of the ssDNA base editing vector for the

BFP reporter system. Bottom of the left panel, the procedure used to detect Sdds catalyzing C-to-T changes using the BFP reporter system in rice protoplasts.

Right, ssDNA and dsDNA cytidine deamination activity identification at endogenous sites. Left of the right panel, schematic diagram of the ssDNA base editing

vector for the endogenous site editing and the DdCBEs vector and its split form. Right of the right panel, the procedure used to detect the activity of DdCBEs on

dsDNA as well as ssDNA CBEs on ssDNA in HEK293T cells, respectively, followed by high-throughput sequencing.

(B) Comparison between the representative structure of SCP1.201 in Figure 1C and the representative structure of each branch of the 12 branches in Figure 2A.

The representative structures of SCP1.201 as shown in Figure 1C and all representative structures from 12 branches of the entire SCP1.201 structural tree

according to the order from left to right on the SCP1.201 structural tree. Branch 2 is the Ddd cluster.

(C) Heatmap summarizing the editing efficiencies of dsDNA substrates of Sdds at HsJAK2 and HsSIRT6 sites. The gene name of active Sdd is colored in red.

DddA with dsDNA deamination activity is colored in green. Data are representative of three independent experiments.

(D) Editing efficiencies of dsDNA substrates of some non-Ddd proteins at HsJAK2 sites. The gene name of active Sdd is colored in red. DddA with dsDNA

deamination activity is colored in green. Dots represent individual biological replicates, bars represent mean values, and error bars represent the SD of three

independent biological replicates.

(E) Protein sequence-based inference of the phylogeny of themembers of the SCP1.201 family. The JAB families are colored brown and regarded as an outgroup,

and the tested deaminases are shown in red, green, and dark gray. Undefined deaminases in light gray await further functional analysis. Nodes with Bootstrap

R90 are identified by circles.

(F) Protein sequence-based inference of the phylogeny of the members of the SCP1.201 family using four outgroups that more closely relate to the SCP1.201

family. The first row is based on structural classification, while the second row is based on sequence classification. Nodes with BootstrapR90 are identified by

circles.
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Figure S3. Evaluating the activities and properties of newly discovered Ddd proteins for use as DdCBEs, related to Figure 3

(A) Heatmap of editing efficiencies and editing windows of SCP1.201 dsDNA deaminases at HsJAK2 target sites in HEK293T cells.

(B) Heatmap of editing efficiencies and editing windows of SCP1.201 dsDNA deaminases at HsSIRT6 target sites in HEK293T cells.

(C) The proportion of editing efficiencies of each context preference among 16 plasmid libraries of different Ddds. Data are represented by the average of three

independent experiments (n = 3).
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Figure S4. Evaluating the activities and properties of newly discovered Sdd proteins for use as base editors, related to Figure 4

(A) Editing behavior of Sdds and rAPOBEC1 at six endogenous target sites in rice protoplasts. The heatmap shows the editing efficiencies and editing windows of

10 Sdds and rAPOBEC1 atOsAAT,OsACC1,OsCDC48-T1,OsCDC48-T2,OsDEP1, andOsODEV sites in rice protoplasts. The values given in the heatmap cells

(legend continued on next page)
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represent C-to-T editing efficiencies. Target sequences are listed above the heatmap, with green boxes marking the positions of C-to-T edits and protospacer

adjacent motifs (PAMs) in red font. Data are represented by the average of three independent experiments.

(B) Editing behavior of SCP1.201 ssDNA deaminases and APOBECs at three endogenous target sites in HEK293T cells. The heatmap gives the editing effi-

ciencies and editing windows of four Sdds, rAPOBEC1, hA3A, rAPOBEC1-YE1, and rAPOBEC1-YEE at the HsEMX1, HsHEK2, HsWFS1 sites in HEK293T cells.

The values given in the heatmap cells represent C-to-T editing efficiencies. Target sequences are listed above the heatmap, with green boxes marking the

positions of C-to-T edits and PAMs in red font. Data are represented by the average of three independent experiments.

(C) Comparison of the efficiencies of Sdd7, rAPOBEC1, and hAPOBEC3A at five sites in rice protoplasts. The efficiencies of Sdd7, rAPOBEC1, and hAPOBEC3A

base editors compared across five endogenous targets, OsACTG, OsALS-T1, OsALS-T2, OsCDC48-T3, and OsMPK16. Dots represent individual biological

replicates, bars represent mean values, and error bars represent the SD of three independent biological replicates.

(D) Sequence preference of Sdds and rAPOBEC1 at five endogenous target sites in rice protoplasts. The stacked graph shows the context preferences of 10

Sdds and rAPOBEC1 at five endogenous target sites, OsAAT, OsACC1, OsCDC48-T1, OsCDC48-T2, and OsDEP1. The green, yellow, blue, and red bars

represent the proportions of C-to-T activity for TC, AC, GC, and CC, respectively. Data are representative of three independent experiments.

(E) Frequencies of off-target events for Sdds and rAPOBEC1 at two endogenous target sites in rice protoplasts. Off-target events were evaluated using the

orthogonal R-loop assay. Frequencies of off-target events for Sdds and rAPOBEC1 at the OsDEP1-SaT1 and OsDEP1-SaT2 sites in rice protoplasts. Dots

represent individual biological replicates, bars represent mean values, and error bars represent the SD of three independent biological replicates.

(F) On-target and off-target editing efficiency of Sdd6 and APOBEC base editors tested across two on-target and three off-target sites in HEK293T cells. Detailed

display of on-target and off-target activity. On-target and off-target editing efficiencies of Sdd6, rAPOBEC1-YE1, rAPOBEC1-YEE, rAPOBEC1, and hAPOBEC3A

across the HsHEK2 and HsHEK3 on-target sites and the HsJAK2-Sa, HsSIRT6-Sa, HsRNF2-Sa, and HsFANCF-SaT1 off-target sites. Dots represent individual

biological replicates, bars represent mean values, and error bars represent the SD of three independent biological replicates.
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Figure S5. Optimization and development of Sdd-CBEs for therapeutic and agricultural applications, related to Figure 5

(A) Conserved protein structure of Sdds with high activity predicted by AlphaFold2. The core structure of Sdds with high deamination activity is shown. For some

deaminases, a4 is not essential.

(B) Testing of the efficiencies of different truncated versions of synthesized deaminase genes at two endogenous target sites in rice protoplasts. Removal of

redundant sequence of synthesized deaminase genes assisted by AlphaFold2. Editing efficiencies of multiple redundant sequence removal versions of Sdd7,

Sdd6, Sdd3, Sdd9, Sdd10, and Sdd4 deaminases at the OsDEP1 and OsODEV sites in rice protoplasts are shown. Truncations included various forms of C-

terminal and N-terminal deletions. Data are representative of three independent experiments. Dots represent mean values, and error bars represent the SD of

three independent biological replicates.

(C) Testing of the efficiencies of different truncated versions of synthesized deaminase genes at two endogenous target sites in human cells. Removal of

redundant sequence of synthesized deaminase genes assisted by AlphaFold2. Comparison of the Sdd3, Sdd9, Sdd6, and Sdd7 deaminases and their redundant

sequence removal versions at the HsHEK3-SaT1 and HsHEK3-SaT2 sites in HEK293T cells. Data are representative of three independent experiments. Dots

represent mean values, and error bars represent the SD of three independent biological replicates.

(D) The intensity of GFP reporter fluorescence and endogenous editing efficiency of wild type and different truncated variants of Sdd7 and Sdd6 based on the

predicted protein structures.

(E) The multiple protein sequence results of six high-activity Sdd proteins. The cyan arrows represent the highest activated truncated N-terminal sites of de-

aminases variants, including mini-Sdd7, Sdd7-N2, mini-Sdd10, mini-Sdd9, mini-Sdd6, mini-Sdd3, and mini-Sdd4.

(F) Comparison the editing efficiencies of mini-Sdd6 with four promoters, CMV, EFS, mini-CMV, and u1a at the HsHEK3-SaT2 and HsFANCF-SaT2 sites in

HEK293T cells. Dots represent individual biological replicates, bars represent mean values, and error bars represent the SD of three independent biological

replicates.

(G) Comparison of mini-Sdd6 with two terminators, bGH and SpA, at the HsHEK3-SaT2 and HsFANCF-SaT2 sites in HEK293T cells to observe the effects of

terminators on AAV vectors. Dots represent mean values, and error bars represent the SD of three independent biological replicates.

(H) Comparison of minU6 and U6 promoters at the HsHEK3-SaT2 and HsFANCF-SaT2 sites in HEK293T cells. Data are representative of three independent

experiments.

(I) Frequencies of base-edited regenerated rice plants. Top, schematic diagram of the base editing binary vector for Agrobacterium-mediated transformation in

rice. Bottom, frequencies of mutations induced by mini-Sdd7 and hAPOBEC3A base editors in T0 rice plants.

(J) Schematic diagram of the base editing binary vector for Agrobacterium-mediated transformation in soybean.
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